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Coordination Over Multi-Agent Networks With Unmeasurable States and
Finite-Level Quantization
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Abstract—In this note, the coordination of linear discrete-time
multi-agent systems over digital networks is investigated with un-
measurable states in agents’ dynamics. The quantized-observer
based communication protocols and Certainty Equivalence princi-
ple based control protocols are proposed to characterize the inter-
agent communication and the cooperative control in an integrative
framework. By investigating the structural and asymptotic proper-
ties of the equations of stabilization and estimation errors, which
are nonlinearly coupled by the finite-level quantization scheme,
some necessary conditions and sufficient conditions are given for
the existence of such communication and control protocols to en-
sure the inter-agent state observation and cooperative stabilization.
It is shown that these conditions come down to the simultaneous
stabilizability and the detectability of the dynamics of agents and
the structure of the communication network.

Index Terms—Cooperatability, finite-level quantization, multi-
agent system, quantized observer.

I. INTRODUCTION

In recent years, the coordination of multi-agent systems has attracted
lots of attention by the systems and control community due to its
wide applications ([1]–[5]). For the coordination of multi-agent systems
with digital networks, the inter-agent communication, which aims at
obtaining neighbors’ state information as precise as possible, is usually
the foundation of designing the cooperative control laws. In real digital
networks, communication channels only have finite capacities and the
communication between different agents is a process which consists
of encoding, information transmitting and decoding. For this case, the
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instantaneously precise communication is generally impossible and
one may seek encoding-decoding schemes to achieve asymptotically
precise communication.

The most basic coordination of multi-agent systems is distributed
consensus or synchronization, which is also called cooperative
stabilization [1]. Quantized consensus and consensus with quantized
communication can be dated back to [6] and [7] with the static
quantization. Carli et al. [8] proposed a dynamic encoding-decoding
scheme for distributed averaging. They proved that with infinite-level
logarithmic quantization, the closed-loop system can achieve exact
average-consensus asymptotically. Li et al. [9] proposed a dynamic
encoding-decoding scheme with vanishing scaling function and
finite-level uniform quantizers. They proved that the exact average-
consensus can be achieved exponentially fast based on merely one-bit
information exchange per communication between neighbors. This
algorithm was then further generalized to the cases with directed and
time-varying topologies ([10], [11]), the case with time delays ([12]),
the case with general linear agent dynamics with full measurable
states ([19]) and the case with second-order integrator dynamics with
partially measurable states ([16]). Recent works in this direction can
be found in [13] for ternary information exchange, the continuous-time
dynamics ([14]) and consensus over finite fields ([15]).

All the above literature ([6]–[16]) focused on designing specific
communication and control protocols and analyzing the closed-loop
performances for specific systems. However, a fundamental problem
of the coordination of multi-agent systems over digital networks is for
what kinds of dynamic networks, there exist proper communication and
control protocols which can guarantee the objectives of the inter-agent
communication and cooperative control jointly. The coordination of
digital multi-agent networks consists of two fundamental factors, one
is the inter-agent state observation by communication among agents,
and the other one is the cooperative control by each agent to achieve
given coordination objectives. The inter-agent state observation is the
objective of the inter-agent communication and is the basis of design-
ing the cooperative control laws. This is similar in spirit to that the state
observation is the basis of the feedback control design for single-agent
systems with unmeasurable states. It is of theoretical and practical sig-
nificance to characterize the inter-agent state observation and the coop-
erative control of multi-agent systems in an integrative framework. In
this framework, one needs to first give the conditions for the existence
of communication and control protocols to ensure both the communi-
cation and control objectives. For the case with precise communica-
tion, the consentability of linear multi-agent systems were studied. The
concept of consentability was first proposed by [17] and [18]. It was
shown that the controllability of agent dynamics and the connectivity
of the communication topology graph have a joint influence on the con-
sentability. You and Xie [19] and Gu et al. [20] studied the consentabil-
ity of single-input linear discrete-time systems and sufficient condi-
tions were given with respect to (w. r. t.) relative state feedback control
protocols in [19] and w. r. t. filtered relative state feedback control
protocols in [20], respectively.
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In this note, motivated by [16]–[19], we consider the cooperatability
of linear discrete-time multi-agent systems with unmeasurable states
and finite communication data rate. We propose a class of communica-
tion protocols based on quantized-observer type encoders and decoders
and a class of control protocols based on the relative state feedback
control law and the Certainty Equivalence principle. The closed-loop
dynamics of the cooperative stabilization and the state estimation er-
rors are coupled by the nonlinearities generated by the finite-level
quantization scheme. By investigating the structural and asymptotic
properties of the overall closed-loop equations, we give some neces-
sary conditions and sufficient conditions for achieving inter-agent state
observation and cooperative stabilization jointly w. r. t. the proposed
classes of communication and control protocols. It is shown that the
cooperatability of multi-agent systems is related to the simultaneous
stabilizability and the detectability of the dynamics of agents and the
structure of the communication graph.

Different from [19] for the case with fully measurable states, we
consider the case with unmeasurable states and the finite communica-
tion data rate. The quantized-observer type encoding/decoding scheme
proposed for second-order integrators in [16] is generalized for the
case with general linear dynamics. Compared with [19] and [20] which
focused on sufficient conditions, we show that the simultaneous sta-
bilizablility of (A, λi (L)B), i = 2, · · · , N and the detectability of
(A, C) are sufficient, and also necessary in some sense, for the co-
operatability of the linear multi-agent systems over digital networks,
where A, B and C are the system matrix, the input matrix and the out-
put matrix, respectively, of each agent and λi (L), i = 2, · · · , N , are
nonzero eigenvalues of the Laplacian matrix L of the communication
graph. We also show that the stabilizability of (A, B)(detectability of
(A, C)) is necessary for the cooperative stabilization (inter-agent state
observation), regardless of whether the inter-agent state observation
(cooperative stabilization) is required.

The following notation will be used. Denote the column vectors or
matrices with all elements being 1 and 0 by 1 and 0, respectively. De-
note the identity matrix with dimension n by In . Denote the sets of real
numbers, positive real numbers and conjugate numbers by R, R + and
C, respectively, and Rn denotes the n-dimensional real space. For any
given vector X ∈ Rn or matrix X = [xij ] ∈ Rn×m , its transpose is de-
noted by XT , and its conjugate transpose is denoted by X∗. Denote the
Euclidean norm of X by ‖X‖ and the infinite norm of X by ‖X‖∞. De-
note the kth element of vector X by [X ]k . Denote the spectral radius of
square matrix X by ρ(X). Define Bn×m

r = {X ∈ Rn×m |‖X‖ < r}
and Bn

r = {X ∈ Rn |‖X‖∞ < r}, r ∈ R + ⋃{+∞}. The Kronecker
product is denoted by ⊗.

II. PROBLEM FORMULATION

We consider a multi-agent network with N agent. The dynamics of
the ith agent is given by

{
xi (t + 1) = Axi (t) + Bui (t),

yi (t) = Cxi (t),
t = 0, 1, · · · , (1)

where A ∈ Rn×n , B ∈ Rn×m and C ∈ Rp×n . Here, xi (t), yi (t) and
ui (t) are the state, the output and the control input of agent i. The
overall communication structure of the network is represented by a
directed graph G = {V, E , A }, where V = {1, · · · , N} is the node
set and each node represents an agent; E denotes the edge set and
there is an edge (j, i) ∈ E if and only if there is a communication
channel from j to i, then, agent i is called the receiver and agent j
is called the sender, or i’s neighbor. The set of agent i’s neighbors is
denoted by Ni = {j ∈ V |(j, i) ∈ E }. We denote A = [aij ] ∈ RN ×N

as the weighted adjacency matrix of G , aij > 0 if and only if j ∈ Ni .

Here we assume aii = 0. Denote degi =
∑N

j=1 aij as the in-degree
of node i and D = diag(deg1 , · · · , degN ) is called the degree matrix
of G . The Laplacian matrix L of G is defined as L = D − A , and
its eigenvalues in an ascending order of real parts are denoted by
λ1 (L) = 0, λi (L), i = 2, · · · , N . The agent dynamics (1) together
with the communication topology graph G is called a dynamic network1

and is denoted by (A, B, C, G ).
For real digital networks, only finite bits of data can be transmit-

ted at each time step, therefore, each agent needs to first quantize and
encode its output into finite symbols before transmitting them. Each
pair of adjacent agents uses an encoding-decoding scheme to exchange
information: For each digital communication channel (j, i), there is
an encoder/decoder pair, denoted by Hji = (Θj , Ψj i ), associate with
it. Here, Θj denotes the encoder maintained by agent j and Ψj i de-
notes the decoder maintained by agent i. For the dynamic network
(A, B, C, G ), the set {Hji , i = 1, · · · , N, j ∈ Ni |Hji = (Θj , Ψj i )}
of encoder-decoder pairs over the whole network is called a communi-
cation protocol, and the collection of such communication protocols is
denoted by the communication protocol set H .

In this note, we propose the following communication protocol set:

H (�, LG ) =
{

H(γ, α, αu , L, Lu , G), γ ∈ (0, �), α ∈ (0, 1],

αu ∈ (0, 1], L ∈ N, Lu ∈ N, G ∈ Bn×p
L G

}
, (2)

where H(γ, α, αu , L, Lu , G) = {Hji , i = 1, · · · , N, j ∈ Ni |Hji =
(Θj , Ψj i ), }. Here the constants LG ∈ R + ⋃{+∞}, � ∈ (0, 1] are
given parameters of the communication protocol set, while γ, α, αu ,
L, Lu and G are parameters of a specific communication protocol. For
each digital channel (j, i), the encoder is given by

Θj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂j (0) = x̂j 0 , ûj (0) = ûj 0 ,

sj (t) = Qα,L

(
yj (t − 1) − Cx̂j (t − 1)

γt−1

)

,

x̂j (t) = Ax̂j (t − 1) + γt−1Gsj (t) + Bûj (t − 1),

ûj (t) = ûj (t − 1) + γt−1su ,j (t),

su ,j (t) = Qα u ,L u

(
uj (t) − ûj (t − 1)

γt−1

)

.

(3)

and the decoder is given by

Ψj i =

⎧
⎪⎪⎨

⎪⎪⎩

x̂j i (0) = x̂j 0 , ûj i (0) = ûj 0 ,

x̂j i (t) = Ax̂j i (t − 1) + γt−1Gsj (t) + Bûj i (t − 1),

ûj i (t) = ûj i (t − 1) + γt−1su ,j (t),

(4)

where Qp,M (·) with p ∈ (0, 1] and M = 1, 2, . . . is a finite-level uni-
form quantizer. For vector inputs, the definition is applied to each
component.

Qp,M (y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ip, ip − p

2
≤ y < ip +

p

2
, i = 0, 1, . . . , M − 1

Mp, y ≥ Mp − p

2
,

− Qp,M (−y), y < −p

2
.

At each time step t, agent j generates the symbolic data sj (t) and
su ,j (t) by the encoder Θj and sends them to agent i through the
channel (j, i). After sj (t), su ,j (t) are received, by the decoder Ψj i ,
agent i calculates x̂j i (t) as an estimate of xj (t). Denote Eji (t) =

1 The concept of dynamic network of agents without output equations was
defined in [21].
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xj (t) − x̂j i (t) as the state estimation error. From (3) and (4), Eji (t) =
xj (t) − x̂j (t), and is denoted by Ej (t) for short. Here, we say that the
dynamic network achieves inter-agent state observation if

lim
t→∞

(xj (t) − x̂j i (t)) = 0, i = 1, · · · , N, j ∈ Ni .

For the case with precise communication, Olfati-Saber and Murray
[21] proposed a class of relative state feedback control protocols:

ui (t) = K
N∑

j=1

aij (xj (t) − xi (t)), i = 1, · · · , N. (5)

Based on (5) and the Certainty Equivalence principle, we propose
the following control protocol set: U (LK ) = {U (K), K ∈ Bm ×n

L K
},

where

U (K) =

{

ui (t), t = 0, 1, · · · , i = 1, . . . , N |

ui (t) = K
∑

j∈N i

aij (x̂j i (t) − x̂i (t))

}

.

(6)

The constant LK ∈ R + ⋃{+∞} is the given parameter of the control
protocol set and the gain matrix K is the parameter of a control protocol
to be designed.

We say that the dynamic network (A, B, C, G ) is locally coop-
eratable if for any given positive constants C1 , C2 , C3 , there exist
communication and control protocols H ∈ H and U ∈ U , such that
for any xi (0) ∈ Bn

C 1
, x̂i0 ∈ Bn

C 2
, and ûi0 ∈ Bm

C 3
, i ∈ 1, · · · , N , the

closed-loop system achieves inter-agent state observation and cooper-
ative stabilization, that is,

(a) lim
t→∞

Ej (t) = 0, j = 1, · · · , N.

(b) lim
t→∞

(xi (t) − xj (t)) = 0, i, j = 1, · · · , N.

The dynamic network is called globally cooperatable if there exist
communication and control protocols H ∈ H and U ∈ U , such that
for any given initial condition, the closed-loop system achieves inter-
agent state observation and cooperative stabilization.

Remark 1: Different from [19] and [20], we consider the cooperata-
bility of linear multi-agent systems with unmeasurable states and finite
data rate. A quantized-observer based encoding-decoding scheme is
proposed to estimate neighbors’ states while decoding. From (4), the
decoder has a similar structure as the Luenberger observer. For the
case with precise communication, the quantizers degenerate to identi-
cal functions and the decoders degenerate to the Luenberger observers.

Remark 2: (i) Our quantized observer is based on the quantized
innovation of yi (t) but not yi (t) itself. This type of observer is also
called differential pulse code modulation (DPCM) in the communica-
tion community, which can save the bandwidth of the communication
channel significantly ([9], [16]). (ii) In a single-agent system, the con-
troller and observer are usually located on the same side, which means
the exact value of the control input can be used to design the observer
directly. However, for the inter-agent state observation of multi-agent
systems, the observers are located faraway from the neighbors’ con-
trollers, which means the exact values of neighbors’ control inputs are
not available. Therefore, the estimations of neighbors’ control inputs
are added into our encoding-decoding schemes. (iii) For second-order
integrator agents, the special dynamic structure makes it feasible to
reconstruct neighbors’ control inputs by differencing the delayed po-
sitions and velocities without explicitly estimate neighbors’ control
inputs ([16]) However, for general linear dynamics, the method in [16]
can not be used. Here, we propose the Luenberger form decoders (4)
with explicit estimations of neighbors’ control inputs.

Remark 3: Here, as a preliminary research, the definition of co-
operatability focus on the ability of multi-agent systems to achieve
inter-agent state observation and cooperative stabilization. The coop-
erative stabilization (synchronization) is the most basic cooperation of
multi-agent systems and forms the foundation of many other kinds of
cooperative controls, such as formation and distributed tracking. The
concept of cooperatability can be further expanded for more general
coordination behaviors. One may wonder that to achieve synchroniza-
tion, why we do not use the decentralized state feedback control law
ui (t) = −Kxi (t) for each agent, then all agents’ states will go to zero
without any inter-agent communication. We do not use the decentral-
ized state feedback control law but (6) mainly for two points. (i) The
decentralized state feedback control law leads to the trivial case, i. e. all
agents’ states will go to zero. Here, the closed-loop system can achieve
more general behavior. One may see that all agents’ states will ap-
proach the weighted average initial values multiplied by the exponent
of the system matrix under the control protocol (6) (see also Remark 4).
This gives more flexibility to achieve complex coordination behavior
by adjusting control and system parameters. (ii) The control protocol
(6) is more flexible than the decentralized state feedback control law.
One may further extend it for the formation control based on relative
state vectors ([22]):

ui (t) = K
∑

j∈N i

aij (x̂j i (t) − x̂i (t) − bij ), i = 1, . . . , N, (7)

or the distributed tracking problem:

ui (t) = K1

∑

j∈N i

aij (x̂j i (t) − x̂i (t))

+K2 bi0 (x̂0 i (t) − x̂i (t)), i = 1, . . . , N. (8)

III. MAIN RESULTS

In this section we give some necessary conditions and sufficient con-
ditions which ensure (A, B, C, G ) to be cooperatable. The following
assumptions will be used.

A1) There exists K ∈ Rm ×n such that the eigenvalues of A −
λi (L)BK , i = 2, · · · , N are all inside the open unit disk of the com-
plex plane.

A2) (A, C) is detectable.

Denote Δj (t − 1) = y j (t−1)−C x̂j (t−1)
γ t−1 − sj (t) and Δu ,j (t − 1) =

u j (t)−û j (t−1)
γ t−1 − su ,j (t) as the quantization errors of

Qα,L (·) and Qα u ,L u (·), respectively. Denote Δ(t) =
(ΔT

1 (t), · · · , ΔT
N (t))T , Δu (t) = (ΔT

u ,1 (t), · · · , ΔT
u ,N (t))T . De-

note X(t) = (xT
1 (t), · · · , xT

N (t))T , X̂(t) = (x̂T
1 (t), · · · , x̂T

N (t))T ,
U (t) = (uT

1 (t), · · · , uT
N (t))T , Û (t) = (ûT

1 (t), · · · , ûT
N (t))T .

Denote E(t) = X(t) − X̂(t), H(t) = U (t) − Û (t), X̄(t) =
( 1

1T π
1πT ⊗ In )X(t), δ(t) = X(t) − X̄(t), where πT is the non-

negative left eigenvector w. r. t. the eigenvalue 0 of L and it can be
verified that πT has at least one nonzero element. Here, δ(t) is called
the cooperative stabilization error. Denote the lower triangular Jordan
canonical of L by diag(0, J2 , · · · , JN ) where Ji is the Jordan chain
with respect to λi (L). We know that there is Φ ∈ RN ×N , consisting
of the left eigenvectors and generalized left eigenvectors of L, such
that ΦLΦ−1 = diag(0, J2 , · · · , JN ). Let Φ = (π, φ2 , · · · , φN )T .
Denote J̄(K) = IN −1 ⊗ A − diag(J2 , · · · , JN ) ⊗ BK , J(G) =
diag(A − GC, · · · , A − GC)n N ×n N .

From (1), (3), (4) and (6), we have

X(t + 1) = (IN ⊗ A)X(t) − (L ⊗ BK)X̂(t). (9)
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and

E(t + 1) = (IN ⊗ (A − GC))E(t) + (IN ⊗ B)H(t)

γt (IN ⊗ G)Δ(t).
(10)

Note that πT L = 0, from (9) it is known that X̄(t + 1) = (IN ⊗
A)X̄(t). Thus, from (9), the definition of E(t), δ(t) and noting that
L1 = 0, we have

δ(t + 1) = (IN ⊗ A − L⊗ BK)δ(t) + (L ⊗ BK)E(t). (11)

Denote F (t) = U (t+1)−Û (t)
γ t . By (3) and the definition of H(t), we

have

H(t + 1) = U (t + 1) − Û (t) − γtQα u ,L u

(
U (t + 1) − Û (t)

γt

)

= γt (F (t) − Qα u ,L u (F (t))) = γtΔu (t).
(12)

From (6), (10) and (11), we can see that

F (t) = (L ⊗ K − L⊗ KA + L2 ⊗ KBK)
δ(t)
γt

+ (L ⊗ K(A − GC) − L2 ⊗ KBK − L⊗ K)
E(t)
γt

+ (Im N + L ⊗ KB)
H(t)
γt

+ (L ⊗ KG)Δ(t).

(13)

Thus, we have the following equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(t + 1) = (IN ⊗ (A − GC))E(t) + (IN ⊗ B)H(t)

+ γt (IN ⊗ G)Δ(t),

δ(t + 1) = (IN ⊗ A − L⊗ BK)δ(t) + (L ⊗ BK)E(t),

H(t + 1) = γt (F (t) − Qα u ,L u (F (t))),

F (t) = (L ⊗ K − L⊗ KA + L2 ⊗ KBK)
δ(t)
γt

+ (L ⊗ K(A − GC) − L2 ⊗ KBK − L⊗ K)
E(t)
γt

+ (Im N + L ⊗ KB)
H(t)
γt

+ (L ⊗ KG)Δ(t).

(14)

We have the following theorems. Due to space limit, the proofs of
Theorems 1 and 2 are given in the form of sketch, whose details can be
found in [25].

Theorem 1: For the dynamic network (A, B, C, G ), LG = +∞,
� = 1 and LK = +∞, suppose that Assumptions A1) and A2) hold.
Then, for any given positive constants Cx , Cx̂ and Cû , there exist
a communication protocol H(γ, α, αu , L, Lu , G) ∈ H (�, LG ) and a
control protocol U (K) ∈ U (LK ) such that for any X(0) ∈ Bn N

C x
,

X̂(0) ∈ Bn N
C x̂

and Û (0) ∈ Bm N
C û

, the dynamic network (A, B, C, G )
achieves inter-agent state observation and cooperative stabilization un-
der H and U , and there exist positive constants W and Wu independent
of γ, α, αu , L, Lu , G and K , such that supt≥0 max1≤j≤N ‖Δj (t)‖∞ ≤
W and supt≥0 max1≤j≤N ‖Δu ,j (t)‖∞ ≤ Wu .

Sketch of Proof (i) Take K ∈ Bm ×n
+∞ which satisfies A1). (ii)

Take G ∈ Bn×p
+∞ such that ρ(A − GC) < 1. (iii) Select α, αu and

γ properly in (0, 1), take L > 1
α

L(K, G, γ, Cx , Cx̂ , Cû , α, αu ) −
1
2 and Lu > 1

α u
Lu (K, G, γ, Cx , Cx̂ , Cû , α, αu )- 1

2 where
L(K, G, γ, Cx , Cx̂ , Cû , α, αu ) and Lu (K, G, γ, Cx , Cx̂ , Cû , α, αu )
are functions of the parameters. By mathematical induction, we can
prove that the quantizers Qα,L (·) and Qα u ,L u (·) are always unsatu-
rate, which leads to uniformly bounded quantization errors. Then based

on the uniform boundedness of the quantization errors, one can prove
that both the inter-agent state observation error and the cooperative
stabilization error vanish exponentially fast. �

Remark 4: It can be verified that X̄(t + 1) = (IN ⊗ A)X̄(t), t =
0, 1, 2, · · · . Since limt→∞ δ(t) = 0, we have

lim
t→∞

[

xi (t) − At

(∑N
i=1 πixi (0)
∑N

i=1 πi

)]

= 0, i = 1, · · · , N.

So all agents’ states will finally approach the trajectory

At
(∑N

i = 1
π i x i (0)

∑N

i = 1
π i

)
. If the control protocol (6) is replaced by

ui (t) = K1xi (t) + K2

∑

j∈N i

aij (x̂j i (t) − x̂i (t)),

t = 0, 1, · · · , i = 1, . . . , N. (15)

which combines the decentralized state feedback and the distributed
quantized relative output feedback, then the closed-loop states approach

(A + BK1 )t
(∑N

i = 1
π i x i (0)

∑N

i = 1
π i

)
. For this kind of control protocols, one

may choose K1 to achieve more complex coordination behavior.
Remark 5: Intuitively, Assumption A1) contains the requirement

on the agent dynamics (A, B) and the communication topology graph
G . If ρ(A) < 1, cooperative stabilization can be achieved by taking
K = 0 (leading to the trivial case), which makes A − λi (L)BK = A,
i = 2, · · · , N all stable even G has no spanning tree (λ2 (L) = 0).
If ρ(A) ≥ 1, then Assumption A1) requires that λ2 (L) 
= 0, which
implies that G contains a spanning tree [23].

For single input discrete-time systems, [19] gave a necessary and
sufficient condition to ensure A1) if all of A’s eigenvalues are on or
outside the unit circle of the complex plane, which was a intuitional
explanation of A1). In fact, for single input agents, a sufficient condition
to ensure A1) can be given:

A1
′
) (A, B) is stabilizable and

∏

j

|λu
j (A)| <

1
infω∈R maxj∈{2 , ··· ,N } |1 − ωλj (L)| .

Here, λu
j (A), 1 ≤ j ≤ n denote the unstable eigenvalues of A. If

ρ(A) < 1, then
∏

j |λu
j (A)| is defined as 0. What’s more, if the com-

munication topology graph is undirected, it was shown in [19] that
1

in f ω ∈R m ax j ∈{2 , ··· , N } |1−ω λj (L) | = 1+λ2 /λN
1−λ2 /λN

and thus the eigenvalue-ratio

λ2/λN plays an important part in the cooperatability of linear multi-
agent systems.

Theorem 2: For single input agents, if Assumption A1
′
) holds, then

Assumption A1) holds.
Sketch of Proof For the case of ρ(A) ≥ 1, it can be proved by re-

duction to absurdity that λj (L) 
= 0, j = 2, · · · , N . Without loss of
generality, we can assume that matrix A has a block diagonal form
diag(As , Au ) where ρ(As ) < 1 and all the eigenvalues of Au are
outside the open unit disk of the complex plane. If not, we can use
a invertible matrix to transform A into that block diagonal form. Re-
spectively, we have B = [BT

1 , BT
2 ]T . Since λi (L) 
= 0, i = 2, · · · , N ,

from Theorem 3.2 of [19], we know that there exist a K̃ such that
ρ(Au − λi (L)B2 K̃) < 1, i = 2, · · · , N . Take K = [0T , K̃ ], then we
can see that ρ(A − λi (L)BK) < 1, i = 2, · · · , N . For the case of
ρ(A) < 1, we can see that A1

′
) suffices for A1) by takeing K = 0. �

Theorem 1 shows that Assumptions A1) and A2) are sufficient con-
ditions for the cooperatability of (A, B, C, G ). Furthermore, we find
that they are also necessary conditions if � < 1.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 9, SEPTEMBER 2017 4651

Theorem 3: For (A, B, C, G ) and LG > 0, LK > 0 and � ∈
(0, 1), suppose that for any given positive constants Cx , Cx̂ and
Cû , there exist a communication protocol H(γ, α, αu , L, Lu , G) ∈
H (�, LG ) and a control protocol U (K) ∈ U (LK ), such that
for any X(0) ∈ Bn N

C x
, X̂(0) ∈ Bn N

C x̂
and Û (0) ∈ Bm N

C û
, the

closed-loop system achieves inter-agent state observation and
cooperative stabilization under H and U , and the quan-
tization errors satisfy supt≥0 max1≤j≤N ‖Δj (t)‖∞ ≤ W and
supt≥0 max1≤j≤N ‖Δu ,j (t)‖∞ ≤ Wu , where W and Wu are positive
constants independent of γ, α, αu , L, Lu , G and K . Then Assumptions
A1) and A2) hold.

Proof: We use reduction to absurdity. Select a constant a satisfying

a >
4Wu ‖B‖√mN

1 − �
+

4LG W
√

nN

1 − �
. (16)

Take Cx >
√

n(2N − 1)a‖Φ−1‖, Cx̂ >
√

nNCx + a
√

nN and
Cû > supK ∈BL K

‖L ⊗ K‖Cx̂

√
nN . Now we prove that if A1) or

A2) would not hold, then for such Cx , Cx̂ and Cû and any com-
munication protocol in (2) and control protocol in (6), there exist
X(0) ∈ Bn N

C x
, X̂(0) ∈ Bn N

C x̂
and Û (0) ∈ Bm N

C û
such that the dynamic

network can not achieve inter-agent state observation and cooperative
stabilization jointly, which leads to the contradiction.

Denote δ̃(t) = (Φ ⊗ In )δ(t). Denote Φ̄ = (φ2 , · · · , φN )T , and de-
note δ̃2 (t) = (Φ̄ ⊗ In )δ(t). From (14), it follows that

(
E(t + 1)
δ̃2 (t + 1)

)

= A(K, G)
(

E(t)
δ̃2 (t)

)

+
(

In N

0

)

(IN ⊗ B)

· H(t) +
(

In N

0

)

(IN ⊗ G)γtΔ(t),

(17)

where A(K, G) =
(

J(G) 0
(Φ̄ ⊗ In )(L ⊗ BK) J̄(K)

)

. Since A1) and

A2) would not hold simultaneously, we have ρ(A(K, G)) ≥ 1 under
any communication protocol in (2) and control protocol in (6). Trans-
form A(K, G) to its Schur canonical, that is, select a unitary matrix P
(P ∗ = P −1 ) such that

P ∗A(K, G)P

=

⎛

⎜
⎝

λ1 (A(K, G)) 0

× . . .
× × λ(2N −1)n (A(K, G))

⎞

⎟
⎠ .

Here, λ1 (A(K, G)), · · · , λ(2N −1)n (A(K, G)) are eigenvalues of
A(K, G) with |λ1 (A(K, G))| = ρ(A(K, G)), and × represents the
elements below the diagonal of the Schur canonical.

Denote Z(t) = P ∗[ET (t), δ̃T
2 (t)]T . From (17) we know that

[Z(t + 1)]1

= λt+1
1 (A(K, G))[Z(0)]1

+
t∑

i=1

λt−i
1 (A(K, G))

[
P ∗[In N , 0T ]T (IN ⊗ B)H(i)

]
1

+
t∑

i=0

λt−i
1 (A(K, G))γi

[
P ∗[In N , 0T ]T (IN ⊗ G)Δ(i)

]
1

+ λt
1 (A(K, G))

[
P ∗[In N , 0T ]T (IN ⊗ B)H(0)

]
1 . (18)

Let P = [P T
1 , P T

2 ]T with P1 ∈ Rn N ×n (2N −1) and P2 ∈
Rn (N −1)×n (2N −1) . Take X(0) = (Φ−1 ⊗ In )[0T , aT P T

2 ]T

where a = a1 ∈ Rn (2N −1) and 0 ∈ Rn , then ‖X(0)‖∞ ≤√
n(2N − 1)a‖Φ−1‖‖P2‖. Note that ‖P2‖ ≤ ‖P ‖ = 1, we have

‖X(0)‖∞ ≤ √
n(2N − 1)a‖Φ−1‖ < Cx , implying X(0) ∈ Bn N

C x
.

Take X̂(0) = X(0) − P1a and Û (0) = −(L ⊗ K)X̂(0). Similarly,
one can see that X̂(0) ∈ Bn N

C x̂
and Û (0) ∈ Bm N

C û
. By the definition

of δ(t) and some direct calculation, we have δ̃(0) = [0T , aT P T
2 ]T ,

and δ̃2 (0) = P2a. By the definition of E(t) and H(t), we know
that E(0) = X(0) − X̂(0) = X(0) − (X(0) − P1a) = P1a, and
H(0) = U (0) − Û (0) = −(L ⊗ K)X̂(0) + (L ⊗ K)X̂(0) = 0.
Since Z(0) = P ∗[E(0)T , δ̃T

2 (0)]T , we have Z(0) = a and
[Z(0)]1 = a.

From (16), we know that
∣
∣
∣
∣
∣

t∑

i=1

λt−i
1 (A(K, G))

[
P ∗[In N , 0T ]T (IN ⊗ B)H(i)

]
1

+
t∑

i=0

λt−i
1 (A(K, G))g(i)

[
P ∗[In N , 0T ]T (IN ⊗ G)Δ(i)

]
1

∣
∣
∣
∣
∣

≤
(

2Wu ‖B‖√mN

1 − �
+

2LG W
√

nN

1 − �

)

|λ1 (A(K, G))|t+1

<
a

2
|λ1 (A(K, G))|t+1 .

(19)

From (18), (19) and noting that H(0) = 0, we have
∣
∣[Z(t + 1)]1

∣
∣ ≥

∣
∣
∣|λ1 (A(K, G))|t+1a − a

2
|λ1 (A(K, G))|t+1

∣
∣
∣

=
a

2
|λ1 (A(K, G))|t+1 .

By the invertibility of P , we know that [ET (t), δT (t)]T does not vanish
as t → ∞. This is in contradiction with that the dynamic network
achieves inter-agent state observation and cooperative stabilization.
So, A1) and A2) hold. �

Remark 6: Actually, the communication protocol parameter γ can
represent the convergence speed of the cooperative coordination (for
both inter-agent state observation and cooperative stabilization). The
smaller γ is, the faster the convergence will be. The constant � is an
upper bound of γ, so it is a uniform upper bound of the convergence
speed. Theorem 3 shows that if (A, B, C, G ) is locally cooperatable
with a uniform exponential convergence speed, then A1) and A2) hold.

Remark 7: Sundaram and Hadjicostis ([24]) showed that a linear
system is structurally controllable and observable over a finite field if
the graph of the system satisfies certain properties and the size of the
field is large enough. They also applied this result into the control of
multi-agent systems over finite fields. Compared with [24], this note
has the following differences. (i) [24] focused on the controllability
and observability of linear systems over finite fields, and the closure
property of the finite field plays an important role in getting their results.
In this note we study the quantized coordination of linear multi-agent
systems over real number field, so the closure and invertible properties
can not be used. (ii) The system matrix A of the linear system in [24]
corresponds to the graph structure of the network and the dynamics
of each agent is actually in some integrator form. What is more, the
elements of the system matrices A, B and C are restricted in finite
fields. In this note, the affect of the graph topology is decided by the
Laplacian matrix, and each agent has the general linear dynamics (see
(1)), where the system matrices A, B and C are arbitrary real matrices.

As preliminary research, this note is concerned with inter-agent state
observation and cooperative stabilization of multi-agent systems over
digital networks. It is an interesting topic for further investigation that
whether our results can be combined with the methodology of [24]
to study the controllability of multi-agent networks under quantized
communication.
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At present, we still do not know whether A1) and A2) are nec-
essary conditions for (A, B, C, G ) to be locally cooperatable w. r. t.
H (1, +∞) and U (+∞). However, we can show that if (A, B, C, G )
is globally cooperatable, then A1) and A2) are necessary w. r. t.
H (1, +∞) and U (+∞).

Theorem 4: For (A, B, C, G ) and LG = +∞, LK = +∞ and � =
1, if there exist a communication protocol H(γ, α, αu , L, Lu , G) ∈
H (�, LG ) and a control protocol U (K) ∈ U (LK ), such that for
any X(0) ∈ Rn N , X̂(0) ∈ Rn N and Û (0) ∈ Rm N , the closed-loop
system achieves inter-agent state observation and cooperative stabi-
lization under H and U , and supt≥0 max1≤j≤N ‖Δj (t)‖∞ < ∞ and
supt≥0 max1≤j≤N ‖Δu ,j (t)‖∞ < ∞, then Assumptions A1) and A2)
hold.

Proof: Denote supt≥0 max1≤j≤N ‖Δj (t)‖∞ by W and
supt≥0max1≤j≤N ‖Δu ,j (t)‖∞ by Wu . Noting that here,
different from Theorem 3, W and Wu may depend on
the parameters γ, α, αu , L, Lu , G and K . Select a con-

stant a greater than 4‖B ‖√m N W u

|λ1 (A (K ,G ))−γ | + 4‖G ‖W √
n N

|λ1 (A (K ,G ))−γ | . Take

X(0) = (Φ−1 ⊗ In )[0T , aT P T
2 ]T where a = a1 ∈ Rn (2N −1)

and 0 ∈ Rn . Take X̂(0) = X(0) − P1a, Û (0) = −(L ⊗ K)X̂(0),
thus E(0) = X(0) − X̂(0) = X(0) − (X(0) − P1a) = P1a, and
H(0) = U (0) − Û (0) = −(L ⊗ K)X̂(0) + (L ⊗ K)X̂(0) = 0.
Thus Z(0) = a and [Z(0)]1 = a. Then similar to the proof of
Theorem 3, we have the conclusion. �

From the following theorems, we can see that the stabilizability of
(A, B) is necessary for (A, B, C, G ) to achieve cooperative stabiliza-
tion no matter whether the inter-agent state observation is required,
and similarly, the detectability of (A, C) is necessary for (A, B, C, G )
to achieve inter-agent state observation regardless of the cooperative
stabilization.

Theorem 5: For (A, B, C, G ), LG = +∞, LK = +∞ and � = 1,
suppose that for any given positive constants Cx , Cx̂ and Cû , there exist
a communication protocol H(γ, α, αu , L, Lu , G) ∈ H (�, LG ) and a
control protocol U (K) ∈ U (LK ), such that for any X(0) ∈ Bn N

C x
,

X̂(0) ∈ Bn N
C x̂

and Û (0) ∈ Bm N
C û

, the closed-loop system achieves
cooperative stabilization under H and U , that is, limt→∞(xj (t) −
xi (t)) = 0, ∀ i, j = 1, 2, . . . , N . Then (A, B) is stabilizable.

Proof: We use the reduction to absurdity to prove this theorem. Sup-
pose that (A, B) is unstabilizable, then there exists an invertible matrix

T1 , such that T −1
1 AT1 =

(
As1 A12

0 Au 4

)

and T −1
1 B =

(
BT

3 , 0T
)T

,

where Au 4 ∈ Rn u 4 ×n u 4 is unstable. Here nu 4 is a positive integer.
Take Cx >

√
n‖Φ−1‖‖T1‖. Take Cx̂ > 1 and Cû > 1. Next we prove

that for any given communication protocol in (2) and control protocol
in (6), there exist X(0) ∈ Bn N

C x
, X̂(0) ∈ Bn N

C x̂
and Û (0) ∈ Bm N

C û
,

such that the dynamic network can not achieve cooperative stabiliza-
tion, which leads to the contradiction. Denote (Φ̄ ⊗ In )E(t) by Ẽ2 (t),
and the first n elements of Ẽ2 (t) and δ̃2 (t) by Ẽ21 (t) and δ̃21 (t), re-
spectively, where Φ̄ and δ̃2 (t) are defined in the proof of Theorem 3.
From (14), we have

δ̃21 (t + 1) = (A − λ2 (L)BK)δ̃21 (t) + λ2 (L)BKẼ21 (t). (20)

Denote δ̂21 (t) = T −1
1 δ̃21 (t), and let KT1 = (K̂3 , K̂4 ) where K̂3 ∈

Rm ×(n−n u 4 ) , K̂4 ∈ Rm ×n u 4 . Thus, from (20), we have

δ̂21 (t + 1) =
(

As1 − λ2 (L)B3 K̂3 ×
0 Au 4

)

δ̂21 (t)

+
(

λ2 (L)B3 K̂3 λ2 (L)B3 K̂4

0 0

)

T −1
1 Ẽ21 (t).

(21)

Denote the last nu 4 elements of δ̂21 (t + 1) by δ̂21n u 4
(t + 1). Then

from (21), we have δ̂21n u 4
(t + 1) = Au 4 δ̂21n u 4

(t). Take X(0) =

(Φ−1 ⊗ In )
(
0T , [T11]T

)T

, then ‖X(0)‖∞ ≤ √
n‖Φ−1‖‖T1‖ <

Cx . By the definition of δ(t), and noting that πT is the first row of Φ,

we have δ(0) = (Φ−1 ⊗ In )
(
0T , [T11]T

)T

. Thus, δ̂21 (0) = 1n and

δ̂21n u 4
(0) = 1n u 4 . Take X̂(0) = 1n N , Û (0) = 1m N , then we have

‖X̂(0)‖∞ < Cx̂ and ‖Û (0)‖∞ < Cû . Since δ̂21n u 4
(0) 
= 0, δ(t) does

not vanish, which draws the contradiction. �
Theorem 6: For (A, B, C, G ), LG = +∞, LK = +∞ and � = 1,

suppose that for any given positive constants Cx , Cx̂ and Cû , there exist
a communication protocol H(γ, α, αu , L, Lu , G) ∈ H (�, LG ) and a
control protocol U (K) ∈ U (LK ), such that for any X(0) ∈ Bn N

C x
,

X̂(0) ∈ Bn N
C x̂

and Û (0) ∈ Bm N
C û

, the closed-loop system achieves
inter-agent state-observation under H and U , then (A, C) is detectable.

Proof: We use the reduction to absurdity to prove this theorem.
If (A, C) was not detectable, then there would exist x0 ∈ Rn , such
that CAlx0 = 0, l = 0, 1, 2, . . . ,, and Atx0 does not go to zero as
t → ∞. Take Cx > ‖x0‖, Cx̂ > 0 and Cû > 0. Next we will prove
that for any given communication protocol H ∈ H (1, +∞) and con-
trol protocol U ∈ U (+∞), there exist X(0) ∈ Bn N

C x
, X̂(0) ∈ Bn N

C x̂

and Û (0) ∈ Bm N
C û

, such that the dynamic network can not achieve
inter-agent state observation, which leads to the contradiction. Take
x1 (0) = x0 and xj = 0, j = 2, · · · , N . Then X(0) ∈ Bn N

C x
. By

Cx0 = 0, we have yj (0) = 0, j = 1, 2, . . . , N . Take X̂(0) = 0 and
Û (0) = 0, so X̂(0) ∈ Bn N

C x̂
and Û (0) ∈ Bm N

C û
. By (6), we know that

U (0) = 0. By (3), (4), noting that yj (0) = 0, j = 1, 2, . . . , N , we
know that sj (1) = 0, j = 1, 2, . . . , N , which together with X̂(0) = 0
and Û (0) = 0 lead to X̂(1) = 0. Then by (3), (4) and (6), it follows
that U (1) = 0, and Û (1) = 0. Then by (1) and CAx0 = 0, we have
yj (1) = 0, j = 1, 2, . . . , N . Suppose that up to time t, t = 2, 3, . . .,
U (k) = Û (k) = 0, and X̂(k) = 0, k = 0, 1, . . . , t − 1. Then by (1),
we have x1 (t − 1) = At−1x0 , xj (t − 1) = 0, j = 2, 3, . . . , N . Not-
ing that CAt−1x0 = 0, it follows that yj (t − 1) = 0, j = 1, 2, . . . , N .
And by (3), (4) and (6), we know that X̂(t) = 0 and U (t) = Û (t) = 0.
Then by mathematical induction, we have X̂(t) ≡ 0 and U (t) ≡ 0,
which together with (1) gives x1 (t) = Atx0 , and x2 (t) = · · · =
xN (t) ≡ 0. Noting that Atx0 does not go to zero as t → ∞, but
X̂(t) ≡ 0, it follows that E(t) = X(t) − X̂(t) does not go to zero
as t → ∞, which leads to the contradiction. �

IV. CONCLUSION

In this note, we studied the inter-agent state observation and coop-
erative stabilization of discrete-time linear multi-agent systems with
unmeasurable states over bandwidth limited digital networks. We pro-
posed a class of quantized-observer based communication protocols
and a class of Certainty Equivalence principle based control protocols.
We showed that the simultaneous stabilizability condition and the de-
tectability condition of agent dynamics are sufficient for the existence
of communication and control protocols to ensure both the inter-agent
state observation and cooperative stabilization. What’s more, we proved
that they are also necessary for the local and global cooperatability in
some sense.

As a preliminary research, we focus on the conditions on the dy-
namics of agents and the network structure to ensure the existence of
finite data rate inter-agent communication and control protocols. An
interesting topic for future investigation is whether there is a lower
bound, which is independent of the number of agents, for the commu-
nication data rate required just as the small channel capacity theorems
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established in [9], [10], [12] and [16]. Note that the independency of
the number of agents implies good scalability for large scale networks.
The problem is more challenging. Also, Due to the time-delay, link
failure or packet dropouts in networks, how to design communication
and control protocols for linear multi-agent systems to ensure both the
cooperative stabilization and inter-agent state observation with finite
data rate, communication delay and packet dropouts is an interesting
and challenging problem.
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